Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a twice differentiable function satisfying a relation f(x2 y)=x2 f(y)+y f(x2) ∀ x, y>0 and f prime(1)=1 then the value of f prime prime((1/7)) is
Q. If a twice differentiable function satisfying a relation
f
(
x
2
y
)
=
x
2
f
(
y
)
+
y
f
(
x
2
)
∀
x
,
y
>
0
and
f
′
(
1
)
=
1
then the value of
f
′′
(
7
1
)
is
50
102
Differential Equations
Report Error
A
7
B
2
7
C
3
7
D
4
7
Solution:
f
(
x
2
y
)
=
x
2
f
(
y
)
+
y
f
(
x
2
)
∀
x
,
y
>
0
differentiate w.r.t.
x
keeping y constant
2
x
y
f
′
(
x
2
y
)
=
f
(
y
)
⋅
2
x
+
y
⋅
2
x
f
′
(
x
2
)
∴
y
f
′
(
x
2
y
)
=
f
(
y
)
+
y
f
′
(
x
2
)
Put
x
=
1
y
f
′
(
y
)
=
f
(
y
)
+
y
f
′
(
1
)
=
f
(
y
)
+
y
.....(1)
Now again differentiate w.r.t.
y
y
f
′′
(
y
)
+
f
′
(
y
)
=
f
′
(
y
)
+
1
∴
f
′′
(
y
)
=
y
1
⇒
f
′′
(
7
1
)
=
7