Q. If a twice differentiable function satisfying a relation $f\left(x^2 y\right)=x^2 f(y)+y f\left(x^2\right) \forall x, y>0$ and $f^{\prime}(1)=1$ then the value of $f^{\prime \prime}\left(\frac{1}{7}\right)$ is
Differential Equations
Solution: