Q.
If [a] denotes the integral part of a and x=a3y+a2z, y=a1z+a3z and z=a2x+a1y, where x,y,z are not all zero. If a1=m−[m],m being a non-integral constant, then a1a2a3 is
Given, x=a3y+a2z…(i) y=a1z1a3x…(ii) z=a2x+a1y…(iii)
Since, x,y,z are not all zero, therefore given system of equations has non-trivial solution. ∴∣∣1a3a2−a3−1a1−a2a1−1∣∣=0 ⇒a12+a22+a32+2a1a2a3=1…(iv)
Since, a1=m−[m] and m is not an integer. ∴0<a1<1 ⇒0<1−a122<1…(v)
From Eq. (iv), 1−a222−a312=a12+2a1a2a3 ⇒1−a22−a32+a22a32=a12+2a1a2a3+a22a32 ⇒(1−a22)(1−a32)=(a1+a2a3)2…(vi)
Similarly, (1−a12)(1−a32)=(a2+a1a3)2…(vii) (1−a12)(1−a22)=(a3+a1a2)2…(viii)
From Eq. (viii), 1−a22=>0⋅1−a12(a3+a1a2)2
From Eq. (viii), 1−a32>0 ⇒3−(a12+a22+a32)>0 ⇒a12+a22+a32<3 ⇒1−2a1a2a3<3 [ From Eq. (iv)] ⇒a1a2a3>−1