Q. If [a] denotes the integral part of $a$ and $x=a_{3} y+a_{2} z$, $y = a _{1} z + a _{3} z$ and $z = a _{2} x + a _{1} y$, where $x , y , z$ are not all zero. If $a _{1}= m -[ m ], m$ being a non-integral constant, then $a _{1} a _{2} a _{3}$ is
Determinants
Solution: