Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a, b, c, d are in G.P., then ((a2 +b2 + c2)(b2+c2+d2)/(ab+bc +cd)2)=
Q. If
a
,
b
,
c
,
d
are in
G
.
P
., then
(
ab
+
b
c
+
c
d
)
2
(
a
2
+
b
2
+
c
2
)
(
b
2
+
c
2
+
d
2
)
=
2305
178
Sequences and Series
Report Error
A
1
36%
B
2
21%
C
3
36%
D
5
7%
Solution:
b
=
a
r
,
c
=
a
r
2
,
d
=
a
r
3
∴
a
2
+
b
2
+
c
2
=
a
2
(
1
+
r
2
+
r
4
)
b
2
+
c
2
+
d
2
=
a
2
r
2
(
1
+
r
2
+
r
4
)
ab
+
b
c
+
c
d
=
a
2
r
(
1
+
r
2
+
r
4
)
∴
(
ab
+
b
c
+
c
d
)
2
(
a
2
+
b
2
+
c
2
)
(
b
2
+
c
2
+
d
2
)
=
1
.