Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a, b, c, d$ are in $G.P$., then
$\frac{\left(a^{2} +b^{2} + c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)}{\left(ab+bc +cd\right)^{2}}= $

Sequences and Series

Solution:

$b= ar, c= ar^{2}, d= ar^{3}$
$\therefore a^{2}+b^{2} +c^{2} = a^{2}\left(1+r^{2}+r^{4}\right)$
$ b^{2}+c^{2}+d^{2}= a^{2}r^{2} \left(1+r^{2}+r^{4}\right)$
$ab + bc +cd = a^{2}r \left(1+r^{2}+r^{4}\right)$
$ \therefore \frac{\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)}{\left(ab+bc+cd\right)^{2}} = 1$.