Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a,b,c are the three vectors mutually perpendicular to each other and |a|=1,|b|=3 and |c|=5, then |a-2b,b-3c,c-4a| is equal to:
Q. If
a
,
b
,
c
are the three vectors mutually perpendicular to each other and
∣
a
∣
=
1
,
∣
b
∣
=
3
and
∣
c
∣
=
5
,
then
∣
a
−
2
b
,
b
−
3
c
,
c
−
4
a
∣
is equal to:
2576
229
KEAM
KEAM 2004
Report Error
A
0
B
−
24
C
3600
D
−
215
E
360
Solution:
[
a
−
2
b
,
b
−
3
c
,
c
−
4
a
]
=
(
a
−
2
b
)
.
{(
b
−
3
c
)
×
(
c
−
4
a
)}
=
(
a
−
2
b
)
.
{
b
×
c
−
4
b
×
a
+
12
c
×
a
}
=
(
a
−
2
b
)
.
(
a
+
4
c
+
12
b
)
=
a
.
a
−
24
b
.
b
=
1
−
24
×
9
=
1
−
216
=
−
215