Since, roots are real, therefore D≥0 ⇒4(a+b+c)2−12λ(ab+bc+ca)≥0 ⇒(a+b+c)2≥3λ(ab+bc+ca) ⇒(a2+b2+c2)≥(ab+bc+ca)(3λ−2) ⇒3λ−2≤ab+bc+caa2+b2+c2​...(i)
Also, cosA=2bcb2+c2−a2​<1⇒b2+c2−a2<2bc
Similarly, c2+a2−b2<2ca
and a2+b2−c2<2ab ⇒a2+b2+c2<2(ab+bc+ca) ⇒ab+bc+caa2+b2+c2​<2...(ii)
From Eqs. (i) and (ii), we get 3λ−2<2⇒λ<34​