Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a, b, c are the sides of a triangle ABC such that x2 2(a+b+c)x+3λ(ab+bc+ca)=0 has real roots, then
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $a, b, c$ are the sides of a triangle $ABC$ such that $x^2 2(a+b+c)x+3\lambda(ab+bc+ca)=0$ has real roots, then
IIT JEE
IIT JEE 2006
Complex Numbers and Quadratic Equations
A
$\lambda<\frac{4}{3}$
43%
B
$\lambda>\frac{5}{3}$
23%
C
$\lambda\in\big(\frac{4}{3},\frac{5}{3}\big)$
27%
D
$\lambda\in\big(\frac{1}{3},\frac{5}{3}\big)$
7%
Solution:
Since, roots are real, therefore $D\ge0$
$\Rightarrow 4(a+b+c)^2-12\lambda(ab+bc+ca)\ge0$
$\Rightarrow (a+b+c)^2\ge3\lambda(ab+bc+ca)$
$\Rightarrow (a^2+b^2+c^2)\ge(ab+bc+ca)(3\lambda-2)$
$\Rightarrow 3\lambda-2 \le \frac{a^2+b^2+c^2}{ab+bc+ca} ...(i)$
Also, $\cos A=\frac{b^2+c^2-a^2}{2bc} < 1 \Rightarrow b^2+c^2-a^2 < 2bc$
Similarly, $c^2+a^2-b^2 < 2ca$
and $ a^2+b^2-c^2 < 2ab$
$\Rightarrow a^2+b^2+c^2 < 2(ab+bc+ca)$
$\Rightarrow \frac{a^2+b^2+c^2}{ab+bc+ca} < 2 ...(ii)$
From Eqs. (i) and (ii), we get
$ 3\lambda-2 < 2 \Rightarrow \lambda < \frac{4}{3}$