Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a, b, c$ are the sides of a triangle $ABC$ such that $x^2 2(a+b+c)x+3\lambda(ab+bc+ca)=0$ has real roots, then

IIT JEEIIT JEE 2006Complex Numbers and Quadratic Equations

Solution:

Since, roots are real, therefore $D\ge0$
$\Rightarrow 4(a+b+c)^2-12\lambda(ab+bc+ca)\ge0$
$\Rightarrow (a+b+c)^2\ge3\lambda(ab+bc+ca)$
$\Rightarrow (a^2+b^2+c^2)\ge(ab+bc+ca)(3\lambda-2)$
$\Rightarrow 3\lambda-2 \le \frac{a^2+b^2+c^2}{ab+bc+ca} ...(i)$
Also, $\cos A=\frac{b^2+c^2-a^2}{2bc} < 1 \Rightarrow b^2+c^2-a^2 < 2bc$
Similarly, $c^2+a^2-b^2 < 2ca$
and $ a^2+b^2-c^2 < 2ab$
$\Rightarrow a^2+b^2+c^2 < 2(ab+bc+ca)$
$\Rightarrow \frac{a^2+b^2+c^2}{ab+bc+ca} < 2 ...(ii)$
From Eqs. (i) and (ii), we get
$ 3\lambda-2 < 2 \Rightarrow \lambda < \frac{4}{3}$