Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a, b, c are nonzero real numbers, then |b2 c2 b c b+c c2 a2 c a c+a a2 b2 a b a+b| is equal to -
Q. If
a
,
b
,
&
c
are nonzero real numbers, then
∣
∣
b
2
c
2
c
2
a
2
a
2
b
2
b
c
c
a
ab
b
+
c
c
+
a
a
+
b
∣
∣
is equal to -
244
205
Determinants
Report Error
A
a
2
b
2
c
2
(
a
+
b
+
c
)
B
ab
c
(
a
+
b
+
c
)
2
C
zero
D
none of these
Solution:
D
=
ab
c
1
∣
∣
a
b
2
c
2
b
c
2
a
2
c
a
2
b
2
ab
c
b
c
a
c
ab
a
(
b
+
c
)
b
(
c
+
a
)
c
(
a
+
b
)
∣
∣
(
R
1
→
a
R
1
,
R
2
→
b
R
2
,
R
3
→
c
R
3
)
=
ab
c
∣
∣
b
c
c
a
ab
1
1
1
ab
+
a
c
b
c
+
ab
c
a
+
c
b
∣
∣
=
ab
c
(
ab
+
b
c
+
c
a
)
∣
∣
b
c
c
a
ab
1
1
1
1
1
1
∣
∣
(
C
3
→
C
3
+
C
1
)
=
0