Thank you for reporting, we will resolve it shortly
Q.
If $a, b, \& c$ are nonzero real numbers, then $\begin{vmatrix}b^2 c^2 & b c & b+c \\ c^2 a^2 & c a & c+a \\ a^2 b^2 & a b & a+b\end{vmatrix}$ is equal to -
Determinants
Solution:
$D =\frac{1}{ abc }\begin{vmatrix} ab ^2 c ^2 & abc & a ( b + c ) \\ bc ^2 a ^2 & bca & b ( c + a ) \\ ca ^2 b ^2 & cab & c ( a + b )\end{vmatrix}$
$\left( R _1 \rightarrow a R _1, R _2 \rightarrow bR _2, R _3 \rightarrow cR _3\right)$
$= abc \begin{vmatrix}bc & 1 & ab + ac \\ ca & 1 & bc + ab \\ ab & 1 & ca + cb \end{vmatrix}$
$= abc ( ab + bc + ca )\begin{vmatrix} bc & 1 & 1 \\ ca & 1 & 1 \\ ab & 1 & 1\end{vmatrix}\left( C _3 \rightarrow C _3+ C _1\right)$
$=0$