Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a, b, c are in arithmetic progression, then the roots of the equation ax2-2bx+c=0 are
Q. If
a
,
b
,
c
are in arithmetic progression, then the roots of the equation
a
x
2
−
2
b
x
+
c
=
0
are
2965
208
WBJEE
WBJEE 2012
Sequences and Series
Report Error
A
1
and
a
c
64%
B
−
a
1
and
−
c
8%
C
−
1
and
−
a
c
14%
D
−
2
and
−
2
a
c
13%
Solution:
Since,
a
,
b
and
c
are in
A
P
.
∴
2
b
=
a
+
c
Given, quadratic equation,
a
x
2
−
2
b
x
+
c
=
0
⇒
a
x
2
−
(
a
+
c
)
x
+
c
=
0
(
2
b
=
a
+
c
)
⇒
a
x
2
−
a
x
−
c
x
+
c
=
0
⇒
a
x
(
x
−
1
)
−
c
(
x
−
1
)
=
0
⇒
(
x
−
1
)
(
a
x
−
c
)
=
0
⇒
x
=
1
,
a
c