Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a,b,c are distinct and rational numbers then | (a2 + b2 + c2) ab+bc+ca ab+bc+ca ab+bc+ca (a2 + b2 + c2) (a b + b c + c a) ab+bc+ca (a b + b c + c a) (a2 + b2 + c2) | is always
Q. If
a
,
b
,
c
are distinct and rational numbers then
∣
∣
(
a
2
+
b
2
+
c
2
)
ab
+
b
c
+
c
a
ab
+
b
c
+
c
a
ab
+
b
c
+
c
a
(
a
2
+
b
2
+
c
2
)
(
ab
+
b
c
+
c
a
)
ab
+
b
c
+
c
a
(
ab
+
b
c
+
c
a
)
(
a
2
+
b
2
+
c
2
)
∣
∣
is always
461
143
NTA Abhyas
NTA Abhyas 2022
Report Error
A
zero
B
Rational & Positive
C
Rational & Negative
D
Irrational and Positive
Solution:
∣
∣
a
b
c
b
c
a
c
a
b
∣
∣
∣
∣
a
b
c
b
c
a
c
a
b
∣
∣
=
∣
∣
a
b
c
b
c
a
c
a
b
∣
∣
2
=
Rational & Positive