Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a,b,c$ are distinct and rational numbers then $\begin{vmatrix} \left(a^{2} + b^{2} + c^{2}\right) & ab+bc+ca & ab+bc+ca \\ ab+bc+ca & \left(a^{2} + b^{2} + c^{2}\right) & \left(a b + b c + c a\right) \\ ab+bc+ca & \left(a b + b c + c a\right) & \left(a^{2} + b^{2} + c^{2}\right) \end{vmatrix}$ is always

NTA AbhyasNTA Abhyas 2022

Solution:

$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$
$=\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}^{2}=$ Rational & Positive