Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A, B and C are exhaustive events satisfying P((A ∪ B) ∩ C)=(1/5), P(B ∩ C)-P(A ∩ B ∩ C)=(1/15) and P(A ∩ C)=(1/10) then P(C ∩(A bar∪ B)) is equal to
Q. If
A
,
B
and
C
are exhaustive events satisfying
P
((
A
∪
B
)
∩
C
)
=
5
1
,
P
(
B
∩
C
)
−
P
(
A
∩
B
∩
C
)
=
15
1
and
P
(
A
∩
C
)
=
10
1
then
P
(
C
∩
(
A
∪
ˉ
B
))
is equal to
484
188
NTA Abhyas
NTA Abhyas 2022
Report Error
A
30
17
B
30
18
C
30
19
D
30
20
Solution:
We have,
P
(
(
A
∪
B
)
∩
C
ˉ
)
=
5
1
P
(
B
∩
C
)
−
P
(
A
∩
B
∩
C
)
=
15
1
P
(
A
∩
C
)
=
10
1
P
(
C
∩
(
A
∪
U
ˉ
))
=
?
Now,
Then,
P
(
C
)
+
P
(
(
A
∪
B
)
∩
C
ˉ
)
=
1
⇒
P
(
C
)
=
1
−
5
1
=
5
4
And,
P
(
C
∩
(
A
∪
B
ˉ
))
=
P
(
C
)
−
[
P
(
B
∩
C
)
−
P
(
A
∩
B
∩
C
)
+
P
(
A
∩
C
)]
⇒
P
(
C
∩
(
A
∪
ˉ
B
))
=
5
4
−
(
15
1
+
10
1
)
=
30
19