PLAN If a,b,c are any three vectors
Then ∣a+b+c∣2≥0 ⇒∣a∣2+∣b∣2+∣c∣2+2(a⋅b+b⋅c+c⋅a)≥0 ∴a⋅b+b⋅c+c⋅a≥2−1(∣a∣2+∣b∣2+∣c∣2)
Given, ∣a−b∣2+∣b−c∣2+∣c−a∣2=9 ⇒∣a∣2+∣b∣2−2a⋅b+∣b∣2+∣c∣2−2b⋅c+∣c∣2+∣a∣2 −2c⋅a=9 ⇒6−2(a⋅b+b⋅c+c⋅a)=9[∵∣a∣=∣b∣=∣c∣=1] ⇒a⋅b+b⋅c+c⋅a=−23.....(i)
Also, a⋅b+b⋅c+c⋅a≥2−1(∣a∣2+∣b∣2+∣c∣2) ≥−23......(ii)
From Eqs. (i) and (ii), ∣a+b+c∣=0
as a⋅b+b⋅c+c⋅a is minimum when ∣a+b+c∣=0 ⇒a+b+c=0 ∴∣2a+5b+5c∣=∣2a+5(b+c)∣=∣2a−5a∣=3