Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a and b are the roots of the equation x2-4x+1=0 (a> b) then the value of f (α, β)=(β3/2) cosec2 ((1/2) tan-1(β/α))+(α3/2) sec2 ((1/2) tan-1(α/β)) is
Q. If
a
and
b
are the roots of the equation
x
2
−
4
x
+
1
=
0
(
a
>
b
)
then the value of
f
(
α
,
β
)
=
2
β
3
​
cose
c
2
(
2
1
​
t
a
n
−
1
α
β
​
)
+
2
α
3
​
se
c
2
(
2
1
​
t
a
n
−
1
β
α
​
)
is
2153
197
Inverse Trigonometric Functions
Report Error
Answer:
56
Solution:
f
(
α
,
β
)
=
2
β
3
​
cose
c
2
(
2
1
​
t
a
n
−
1
α
β
​
)
+
2
α
3
​
se
c
2
(
2
1
​
t
a
n
−
1
β
α
​
)
Let
t
a
n
−
1
(
α
β
​
)
=
θ
and
t
a
n
−
1
(
β
α
​
)
=
Ï•
f
(
α
,
β
)
=
2
s
i
n
2
2
θ
​
β
3
​
+
2
co
s
2
2
Ï•
​
α
3
​
=
1
−
cos
θ
β
3
​
+
1
+
cos
Ï•
α
3
​
=
1
−
α
2
+
β
2
​
α
​
β
3
​
+
1
+
α
2
+
β
2
​
β
​
α
3
​
=
α
2
+
β
2
​
[
α
2
+
β
2
​
−
α
β
3
​
+
α
2
+
β
2
​
+
β
α
3
​
]
=
α
2
+
β
2
​
[
β
2
β
3
(
α
2
+
β
2
​
+
α
)
​
+
α
2
α
3
(
α
2
+
β
2
−
β
​
)
​
]
=
α
2
+
β
2
​
[
β
α
2
+
β
2
​
+
α
α
2
+
β
2
​
]
f
(
α
,
β
)
=
(
α
2
+
β
2
)
(
α
+
β
)
Now,
α
+
β
=
4
and
α
β
=
1
f
(
α
,
β
)
=
(
(
α
+
β
)
2
−
2
α
β
)
)
(
α
+
β
)
=
(
16
−
2
)
(
4
)
=
56