Q.
If $a$ and $b$ are the roots of the equation $x^{2}-4x+1=0 (a>\,b)$ then the value of
$f \left(\alpha, \beta\right)=\frac{\beta^{3}}{2} cosec^{2} \left(\frac{1}{2} tan^{-1}\frac{\beta}{\alpha}\right)+\frac{\alpha^{3}}{2} sec^{2} \left(\frac{1}{2} tan^{-1}\frac{\alpha}{\beta}\right)$ is
Inverse Trigonometric Functions
Solution: