Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A and B are invertible matrices, then which of the following is not correct?
Q. If A and B are invertible matrices, then which of the following is not correct?
2142
189
Determinants
Report Error
A
adj
A
=
∣
A
∣
.
A
−
1
21%
B
d
e
t
(
A
)
−
1
=
[
d
e
t
(
A
)
]
−
1
27%
C
(
A
B
)
−
1
=
B
−
1
A
−
1
18%
D
(
A
+
B
)
−
1
=
B
−
1
+
A
−
1
34%
Solution:
(
A
+
B
)
−
1
=
B
−
1
+
A
−
1
e. g.
A
=
[
3
2
7
5
]
,
B
=
[
6
7
8
9
]
A
+
B
=
[
9
9
15
14
]
∣
A
+
B
∣
=
9
×
14
−
9
×
15
=
−
9
=
0
So,
(
A
+
B
)
is invertible.
adj
(
A
+
B
)
=
[
14
−
9
−
15
9
]
(
A
+
B
)
−
1
=
9
−
1
[
14
−
9
−
15
9
]
=
[
9
−
14
1
9
15
−
1
]
Now,
∣
A
∣
=
3
×
5
−
2
×
7
=
15
−
14
=
1
=
0
and
∣
B
∣
=
6
×
9
−
7
×
8
=
54
−
56
=
−
2
=
0
So,
A
and
B
both are invertible.
A
−
1
=
[
5
−
2
−
7
3
]
and
B
−
1
=
2
−
1
[
9
−
7
−
8
6
]
⇒
B
−
1
=
[
2
−
9
2
7
4
−
3
]
Now,
B
−
1
+
A
−
1
=
[
−
2
9
2
7
4
−
3
]
+
[
5
−
2
−
7
3
]
=
[
2
1
2
3
−
3
0
]
=
[
−
9
14
1
9
15
−
1
]
=
(
A
+
B
)
−
1
Hence,
(
A
+
B
)
−
1
=
B
−
1
+
A
−
1