Thank you for reporting, we will resolve it shortly
Q.
If A and B are invertible matrices, then which of the following is not correct?
Determinants
Solution:
$\left(A+B\right)^{-1} \ne B^{-1}+A^{-1}$
e. g. $A=\left[\begin{matrix}3&7\\ 2&5\end{matrix}\right], B=\left[\begin{matrix}6&8\\ 7&9\end{matrix}\right]$
$A + B =\left[\begin{matrix}9&15\\ 9&14\end{matrix}\right]$
$\left|A+B\right|=9\times14-9\times15=-9\ne0$
So, $\left(A + B\right)$ is invertible.
adj $\left(A + B\right) =\left[\begin{matrix}14&-15\\ -9&9\end{matrix}\right]$