Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a and b are arbitrary constants, then the differential equation having (x2/a2)+(y2/b2)=1 as its general solution is
Q. If
a
and
b
are arbitrary constants, then the differential equation having
a
2
x
2
+
b
2
y
2
=
1
as its general solution is
2109
196
AP EAMCET
AP EAMCET 2018
Report Error
A
(
d
x
2
d
2
y
)
2
=
[
1
+
(
d
x
d
y
)
2
]
3
B
(
x
2
−
y
2
)
d
x
2
d
2
y
−
2
x
y
d
x
d
y
−
y
=
0
C
x
y
d
x
2
d
2
y
+
x
(
d
x
d
y
)
2
−
y
d
x
d
y
=
0
D
x
2
d
x
2
d
2
y
+
2
x
d
x
d
y
−
2
y
=
0
Solution:
a
2
x
2
+
b
2
y
2
=
1
On differentiating,
a
2
2
x
+
b
2
2
y
d
x
d
y
=
0
⇒
x
y
d
x
d
y
=
a
2
−
b
2
Again differentiating w.r.t.
x
x
y
d
x
2
d
2
y
+
d
x
d
y
[
x
2
x
d
x
d
y
−
y
]
=
0
⇒
x
y
d
x
2
d
2
y
+
d
x
d
y
[
x
d
x
d
y
−
y
]
=
0
⇒
x
y
d
x
2
d
2
y
+
x
(
d
x
d
y
)
2
−
y
d
x
d
y
=
0