Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a$ and $b$ are arbitrary constants, then the differential equation having $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ as its general solution is

AP EAMCETAP EAMCET 2018

Solution:

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
On differentiating,
$\frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=0 $
$\Rightarrow \frac{y}{x} \frac{d y}{d x}=\frac{-b^{2}}{a^{2}}$
Again differentiating w.r.t. $x$
$\frac{y}{x} \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}\left[\frac{x \frac{d y}{d x}-y}{x^{2}}\right]=0$
$\Rightarrow x y \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}\left[x \frac{d y}{d x}-y\right]=0$
$ \Rightarrow x y \frac{d^{2} y}{d x^{2}}+x\left(\frac{d y}{d x}\right)^{2}-y \frac{d y}{d x}=0$