Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If |a&a2&1+a3 b&b2&1+b3 c&c2&1+c3|=0 and the vectors A = (1, a, a2), B= (1, b, b2), C=(1, c, c2) are non-coplanar, then the value of abc is equal to
Q. If
∣
∣
a
b
c
a
2
b
2
c
2
1
+
a
3
1
+
b
3
1
+
c
3
∣
∣
=
0
and the vectors
A
=
(
1
,
a
,
a
2
)
,
B
=
(
1
,
b
,
b
2
)
,
C
=
(
1
,
c
,
c
2
)
are non-coplanar, then the value of abc is equal to
2226
251
Vector Algebra
Report Error
A
−
2
B
0
C
1
D
−
1
Solution:
Given,
∣
∣
a
b
c
a
2
b
2
c
2
1
+
a
3
1
+
b
3
1
+
c
3
∣
∣
=
0
⇒
∣
∣
a
b
c
a
2
b
2
c
2
1
1
1
∣
∣
+
ab
c
∣
∣
1
1
1
a
b
c
a
2
b
2
c
2
∣
∣
=
0
⇒
(
ab
c
+
1
)
∣
∣
1
1
1
a
b
c
a
2
b
2
c
2
∣
∣
=
0
⇒
(
ab
c
+
1
)
∣
∣
1
1
1
a
b
c
a
2
b
2
c
2
∣
∣
=
0
Since given three vectors are non coplanar
∴
ab
c
=
−
1