Q. If $\begin{vmatrix}a&a^{2}&1+a^{3}\\ b&b^{2}&1+b^{3}\\ c&c^{2}&1+c^{3}\end{vmatrix}=0 $ and the vectors $A = (1, a, a^{2}), B= (1, b, b^{2}), C=(1, c, c^{2})$ are non-coplanar, then the value of abc is equal to
Vector Algebra
Solution: