Q.
If a>2, then the roots of the equation (2−a)x2+3ax−1=0 are
4162
252
NTA AbhyasNTA Abhyas 2020Complex Numbers and Quadratic Equations
Report Error
Solution:
Let, f(x)=x2−a−23ax+a−21=0 D=(a−2)29a2−4(a−2)1=(a−2)29a2−4a+8 =(a−2)28a2+(a−2)2+4>0 f(0)=a−21>0 and 2A−B=2(a−2)3a>0
Since, D>0,f(0)>0,2A−B>0
Hence, both roots of the given equation are positive.