Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a>2, then the roots of the equation (2 - a)x2+3ax-1=0 are
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $a>2,$ then the roots of the equation $\left(2 - a\right)x^{2}+3ax-1=0$ are
NTA Abhyas
NTA Abhyas 2020
Complex Numbers and Quadratic Equations
A
one positive and one negative
B
both negative
C
both positive
D
both imaginary
Solution:
Let, $f\left(x\right)=x^{2}-\frac{3 a}{a - 2}x+\frac{1}{a - 2}=0$
$D=\frac{9 a^{2}}{\left(a - 2\right)^{2}}-4\frac{1}{\left(a - 2\right)}=\frac{9 a^{2} - 4 a + 8}{\left(a - 2\right)^{2}}$
$=\frac{8 a^{2} + \left(a - 2\right)^{2} + 4}{\left(a - 2\right)^{2}}>0$
$f\left(0\right)=\frac{1}{a - 2}>0$ and
$\frac{- B}{2 A}=\frac{3 a}{2 \left(a - 2\right)}>0$
Since, $D>0,f\left(0\right)>0,\frac{- B}{2 A}>0$
Hence, both roots of the given equation are positive.