Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A=[2 λ -3 0 2 5 1 1 3], the then A-1 exists, if
Q. If
A
=
⎣
⎡
2
0
1
λ
2
1
−
3
5
3
⎦
⎤
, the then
A
−
1
exists, if
1402
144
Determinants
Report Error
A
λ
=
2
B
λ
=
−
2
C
λ
=
−
2
D
None of these
Solution:
The given matrix is
A
=
⎣
⎡
2
0
1
λ
2
1
−
3
5
3
⎦
⎤
.
Now,
A
−
1
exists, if
∣
A
∣
=
0
⇒
∣
∣
2
0
1
λ
2
1
−
3
5
3
∣
∣
=
0
⇒
2
∣
∣
2
1
5
3
∣
∣
−
λ
∣
∣
0
1
5
3
∣
∣
−
3
∣
∣
0
1
2
1
∣
∣
=
0
⇒
2
(
6
−
5
)
−
λ
(
0
−
5
)
−
3
(
0
−
2
)
=
0
⇒
2
+
5
λ
+
6
=
0
⇒
5
λ
=
−
8
⇒
λ
=
−
5
8