Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A=\begin{bmatrix}2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3\end{bmatrix}$, the then $A^{-1}$ exists, if

Determinants

Solution:

The given matrix is $A=\begin{bmatrix}2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3\end{bmatrix}$.
Now, $A^{-1}$ exists, if $|A| \neq 0$
$\Rightarrow \begin{vmatrix}2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3\end{vmatrix} \neq 0$
$\Rightarrow 2\begin{vmatrix}2 & 5 \\ 1 & 3\end{vmatrix}-\lambda\begin{vmatrix}0 & 5 \\ 1 & 3\end{vmatrix}-3\begin{vmatrix}0 & 2 \\ 1 & 1\end{vmatrix}\neq 0$
$\Rightarrow 2(6-5)-\lambda(0-5)-3(0-2) \neq 0 $
$ \Rightarrow 2+5 \lambda+6 \neq 0 $
$ \Rightarrow 5 \lambda \neq-8 $
$ \Rightarrow \lambda \neq-\frac{8}{5}$