Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A=[ 2 -2 -4 -1 3 4 1 -2 -3 ] and B=[ -4 -3 -3 1 0 1 4 4 3 ] are two matrices, then the value of the determinant (A + A2 B2 + A3 + A4 B4 + . . . . . . . . . 20 t e r ms) is
Q. If
A
=
⎣
⎡
2
−
1
1
−
2
3
−
2
−
4
4
−
3
⎦
⎤
and
B
=
⎣
⎡
−
4
1
4
−
3
0
4
−
3
1
3
⎦
⎤
are two matrices, then the value of the determinant
(
A
+
A
2
B
2
+
A
3
+
A
4
B
4
+
.........20
t
er
m
s
)
is
1397
218
NTA Abhyas
NTA Abhyas 2020
Matrices
Report Error
A
(
20
)
3
22%
B
2
(
20
)
3
36%
C
−
(
20
)
3
17%
D
0
25%
Solution:
A
2
=
⎣
⎡
2
−
1
1
−
2
3
−
2
−
4
4
−
3
⎦
⎤
⎣
⎡
2
−
1
1
−
2
3
−
2
−
4
4
−
3
⎦
⎤
=
⎣
⎡
2
−
1
1
−
2
3
−
2
−
4
4
−
3
⎦
⎤
=
A
B
2
=
⎣
⎡
−
4
1
4
−
3
0
4
−
3
1
3
⎦
⎤
⎣
⎡
−
4
1
4
−
3
0
4
−
3
1
3
⎦
⎤
=
⎣
⎡
1
0
0
0
1
0
0
0
1
⎦
⎤
=
I
B
2
=
B
4
=
B
6
=
B
8
=
.......
=
B
20
=
I
A
2
=
A
3
=
A
4
=
.......
A
20
=
A
So,
∣
∣
A
+
A
2
B
2
+
A
3
.......
+
A
20
B
20
∣
∣
=
∣
A
+
A
+
A
.......
+
A
∣
=
∣
20
A
∣
=
(
20
)
3
∣
A
∣
....(1)
∣
A
∣
=
∣
∣
2
−
1
1
−
2
3
−
2
−
4
4
−
3
∣
∣
=
2
(
−
9
+
8
)
+
2
(
3
−
4
)
−
4
(
2
−
3
)
=
−
2
−
2
+
4
=
0
Hence, from equation (1),
∣
∣
A
+
A
2
B
2
+
A
3
.......
+
A
20
B
20
∣
∣
=
0