Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A=\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ and $B=\begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$ are two matrices, then the value of the determinant $\left(A + A^{2} B^{2} + A^{3} + A^{4} B^{4} + . . . . . . . . . 20 \, t e r ms\right)$ is

NTA AbhyasNTA Abhyas 2020Matrices

Solution:

$A^{2}=\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ $=\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}=A$
$B^{2}=\begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}\begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$ $=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}=Ι$
$B^{2}=B^{4}=B^{6}=B^{8}=.......=B^{20}=Ι$
$A^{2}=A^{3}=A^{4}=.......A^{20}=A$
So, $\left|A + A^{2} B^{2} + A^{3} . . . . . . . + A^{20} B^{20}\right|$ $=\left|A + A + A . . . . . . . + A\right|=\left|20 A\right|$ $=\left(20\right)^{3}\left|A\right|$ ....(1)
$\left|A\right|=\begin{vmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{vmatrix}=2\left(- 9 + 8\right)+2\left(3 - 4\right)-4\left(2 - 3\right)$
$=-2-2+4=0$
Hence, from equation (1),
$\left|A + A^{2} B^{2} + A^{3} . . . . . . . + A^{20} B^{20}\right|=0$