Given vertices of a △ABC are A(−1,3,2),B(2,3,5) and C(3,5,−2)
Now DR's of AB=(2+1,3−3,5−2)=(3,0,3)
DR's of BC=(3−2,5−3,−2−5)=(1,2,−7)
and DR's of CA=(−1−3,3−5,2+2)=(−4,−2,4)
Now, the angle between AB and BC, cosB=32+02+3212+22+(−7)2∣3×1+0×2+3×(−7)∣ =9+0+91+4+49∣3+0−21∣ =32×3618=232=31
angle between BC and CA, cosC=12+22+(−7)2(−4)2+(−2)2+(4)2∣1×(−4)+2(−2)+(−7)(4)∣ =1+4+4916+4+16∣−4−4−28∣ =543636=36×636 =232=32
and angle between AC and AB, cosA=(−4)2+(−2)2+(4)232+02+32∣−4×3+(−2)×0+4×3∣ =∣0∣ ⇒A=90∘