Thank you for reporting, we will resolve it shortly
Q.
If A(−1,3,2),B(2,3,5) and C(3,5,−2) are vertices of a △ABC, then angles of △ABC are
ManipalManipal 2020
Solution:
Given vertices of a △ABC are A(−1,3,2),B(2,3,5) and C(3,5,−2)
Now DR's of AB=(2+1,3−3,5−2)=(3,0,3)
DR's of BC=(3−2,5−3,−2−5)=(1,2,−7)
and DR's of CA=(−1−3,3−5,2+2)=(−4,−2,4)
Now, the angle between AB and BC, cosB=|3×1+0×2+3×(−7)|√32+02+32√12+22+(−7)2 =|3+0−21|√9+0+9√1+4+49 =183√2×3√6=22√3=1√3
angle between BC and CA, cosC=|1×(−4)+2(−2)+(−7)(4)|√12+22+(−7)2√(−4)2+(−2)2+(4)2 =|−4−4−28|√1+4+49√16+4+16 =36√54√36=363√6×6 =2√2√3=√2√3
and angle between AC and AB, cosA=|−4×3+(−2)×0+4×3|√(−4)2+(−2)2+(4)2√32+02+32 =|0| ⇒A=90∘