Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a1 = 1 and an+1 = (4+3an/3+2an), n ge 1 and if displaystyle limn→∞ an = n, then the value of a is
Q. If
a
1
=
1
and
a
n
+
1
=
3
+
2
a
n
4
+
3
a
n
,
n
≥
1
and if
n
→
∞
lim
a
n
=
n
, then the value of a is
1778
192
Limits and Derivatives
Report Error
A
2
23%
B
−
2
62%
C
2
8%
D
None of these
8%
Solution:
We have
a
n
+
1
=
3
+
2
a
n
4
+
3
a
n
⇒
n
→
∞
lim
a
n
+
1
=
n
→
∞
lim
3
+
2
a
n
4
+
3
a
n
⇒
a
=
3
+
2
a
n
4
+
3
a
n
⇒
2
a
2
=
4
⇒
a
=
2
a
=
2
because each
a
n
>
0
, therefore
l
im
a
n
=
a
>
0.