Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a_{1} = 1$ and $a_{n+1} = \frac{4+3a_{n}}{3+2a_{n}}, n \ge 1$ and if $\displaystyle\lim_{n\to\infty} a_{n} = n$, then the value of a is

Limits and Derivatives

Solution:

We have $a_{n+1} = \frac{4+3a_{n}}{3+2a_{n}} \Rightarrow \displaystyle\lim_{n\to\infty} a_{n+1} = \lim _{n\to \infty } \frac{4+3a_{n}}{3+2a_{n}}$
$\Rightarrow \quad a = \frac{4+3a_{n}}{3+2a_{n}} \Rightarrow 2a^{2} = 4 \Rightarrow a = \sqrt{2}$
$a \ne \sqrt{2}$ because each $a_{n} > 0$, therefore $lim \,a_{n} = a > 0.$