Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 3(a2+b2+c2+1)=2(a+b+c+a b+b c+c a) then the value of |a b c b c c a a b 1 2 2| is equal to
Q. If
3
(
a
2
+
b
2
+
c
2
+
1
)
=
2
(
a
+
b
+
c
+
ab
+
b
c
+
c
a
)
then the value of
∣
∣
a
b
c
1
b
c
a
2
c
ab
2
∣
∣
is equal to
594
96
Determinants
Report Error
A
a
+
b
+
c
B
a
+
b
−
2
c
C
ab
c
D
4
a
2
b
2
c
2
Solution:
Clearly,
(
a
−
1
)
2
+
(
b
−
1
)
2
+
(
c
−
1
)
2
+
(
a
−
b
)
2
+
(
b
−
c
)
2
+
(
c
−
a
)
2
=
0
⇒
a
=
b
=
c
=
1
∴
Determinant
=
∣
∣
1
1
1
1
1
2
1
1
2
∣
∣
=
0