Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $3\left(a^2+b^2+c^2+1\right)=2(a+b+c+a b+b c+c a)$ then the value of $\begin{vmatrix}a & b & c \\ b c & c a & a b \\ 1 & 2 & 2\end{vmatrix}$ is equal to

Determinants

Solution:

$\text { Clearly, }( a -1)^2+( b -1)^2+( c -1)^2+( a - b )^2+( b - c )^2+( c - a )^2=0$
$\Rightarrow a = b = c =1$
$\therefore $ Determinant $=\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 2\end{vmatrix}=0$