32sin2θ−1,14 and 34−2sin2θ are in A.P. ⇒28=32sin2θ−1+34−2sin2θ ⇒28=332sin2θ+32sin2θ34 ⇒28=3m+m34…[ Take m=32sin2θ] ⇒84m=m2+35 ⇒m2−84m+243=0 ⇒(m−3)(m−81)=0 ⇒m=3 or m=81=34 ⇒32sin2θ=3
or 32sin2θ=34
But, 2sin2θ=4 is not possible. ⇒2sin2θ=1 ⇒2θ=30∘ ⇒3∘,14 and 33 are in A.P.
i.e. 1,14 and 27 are in A.P. ⇒t7=1+(7−1)13=79