Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 32 sin 2 θ-1, 14 and 34-2 sin 2 θ are the first three terms of an A.P., then find its 7 text th term.
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $3^{2 \sin 2 \theta-1}, 14$ and $3^{4-2 \sin 2 \theta}$ are the first three terms of an A.P., then find its $7^{\text {th }}$ term.
Sequences and Series
A
B
C
D
Solution:
$3^{2 \sin 2 \theta-1}, 14$ and $3^{4-2 \sin 2 \theta}$ are in A.P.
$\Rightarrow 28=3^{2 \sin 2 \theta-1}+3^{4-2 \sin 2 \theta} $
$\Rightarrow 28=\frac{3^{2 \sin 2 \theta}}{3}+\frac{3^{4}}{3^{2 \sin 2 \theta}}$
$\Rightarrow 28=\frac{m}{3}+\frac{3^{4}}{m}\ldots\left[\right.$ Take $\left.m=3^{2 \sin 2 \theta}\right]$
$\Rightarrow 84 m=m^{2}+3^{5}$
$\Rightarrow m^{2}-84 m+243=0$
$\Rightarrow(m-3)(m-81)=0$
$\Rightarrow m=3$ or $m=81=3^{4}$
$\Rightarrow 3^{2 \sin 2 \theta}=3 $
or $ 3^{2 \sin 2 \theta}=3^{4}$
But, $2 \sin 2 \theta=4$ is not possible.
$\Rightarrow 2 \sin 2 \theta=1$
$\Rightarrow 2 \theta=30^{\circ}$
$\Rightarrow 3^{\circ}, 14$ and $3^{3}$ are in A.P.
i.e. $1,14$ and $27$ are in A.P.
$\Rightarrow t_{7}=1+(7-1) 13=79$