Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 1, ω, ω2 are the cube roots of unity, then Δ= |1 ωn ω2 n ωn ω2 n 1 ω2 n 1 ωn| is equal to-
Q. If
1
,
ω
,
ω
2
are the cube roots of unity, then
Δ
=
∣
∣
1
ω
n
ω
2
n
ω
n
ω
2
n
1
ω
2
n
1
ω
n
∣
∣
is equal to-
41
163
Complex Numbers and Quadratic Equations
Report Error
A
0
67%
B
1
21%
C
ω
6%
D
ω
2
6%
Solution:
Given
Δ
=
∣
∣
1
ω
n
ω
2
n
ω
n
ω
2
n
1
ω
2
n
1
ω
n
∣
∣
=
1
(
ω
3
n
−
1
)
−
ω
n
(
ω
2
n
−
ω
2
n
)
+
ω
2
n
(
ω
n
−
ω
4
n
)
=
1
(
1
−
1
)
−
0
+
ω
2
n
(
ω
n
−
ω
n
)
=
0