Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $1, \omega, \omega^2$ are the cube roots of unity, then $\Delta= \begin{vmatrix}1 & \omega^n & \omega^{2 n} \\ \omega^n & \omega^{2 n} & 1 \\ \omega^{2 n} & 1 & \omega^n\end{vmatrix}$ is equal to-

Complex Numbers and Quadratic Equations

Solution:

Given $\Delta=\begin{vmatrix}1 & \omega^n & \omega^{2 n} \\ \omega^n & \omega^{2 n} & 1 \\ \omega^{2 n} & 1 & \omega^n\end{vmatrix}=1\left(\omega^{3 n}-1\right)-\omega^n\left(\omega^{2 n}-\omega^{2 n}\right)+\omega^{2 n}\left(\omega^n-\omega^{4 n}\right)$
$=1(1-1)-0+\omega^{2 n}\left(\omega^n-\omega^n\right)=0$