Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If I1=∫0(π/2) f (sin 2x)sin xdx and I2 = ∫π/40 f(cos2x) cosx dx then I1/I2 =
Q. If
I
1
=
∫
0
2
π
f
(
s
in
2
x
)
s
in
x
d
x
and
I
2
=
∫
0
π
/4
f
(
cos
2
x
)
cos
x
d
x
t
h
e
n
I
1
/
I
2
=
3850
199
AMU
AMU 2011
Integrals
Report Error
A
1
100%
B
2
0%
C
2
1
0%
D
2
0%
Solution:
Given
I
1
=
0
∫
π
/2
f
(
s
in
2
x
)
s
in
x
d
x
⇒
I
1
=
0
∫
π
/2
f
(
s
in
2
x
)
cos
x
d
x
(
∵
0
∫
a
f
(
x
)
d
x
=
0
∫
a
f
(
a
−
x
)
d
x
]
⇒
2
I
1
=
0
∫
π
/2
f
(
s
in
2
x
)
(
s
in
x
)
+
cos
x
)
d
x
=
2
0
∫
π
/2
f
(
s
in
2
x
)
cos
(
x
−
4
π
)
d
x
Put
x
−
4
π
=
t
⇒
d
x
=
d
t
∴
2
I
1
=
2
−
π
/4
∫
π
/4
f
(
s
in
(
2
π
+
2
t
))
cos
t
d
t
∴
2
I
1
=
2
2
0
∫
π
/4
f
(
cos
2
t
)
cos
t
d
t
⇒
I
1
=
2
0
∫
π
/4
f
(
cos
2
x
)
cos
x
d
x
⇒
I
1
=
2
I
2