Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If I1=∫0(π/2) f (sin 2x)sin xdx and I2 = ∫π/40 f(cos2x) cosx dx then I1/I2 =
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $ I_{1}=\int_{0}^{\frac{\pi}{2}} f (sin \,2x)sin \,xdx $ and $ I_2 = \int^{\pi/4}_{0}\,f(cos2x) cosx \,dx\,then\, I_1/I_2 $ =
AMU
AMU 2011
Integrals
A
$ 1 $
100%
B
$ \sqrt{2} $
0%
C
$ \frac{1}{\sqrt{2}} $
0%
D
$ 2 $
0%
Solution:
Given $I_1 = \int\limits_0^{\pi/2} f(sin\,2x) sin\,x dx$
$\Rightarrow I_1 = \int\limits_0^{\pi/2} f(sin\,2x) cos\,x dx$
$(\because \int\limits_0^a f(x) dx = \int\limits_0^a f( a-x) dx ]$
$\Rightarrow 2I_1 = \int\limits_0^{\pi/2} f(sin\,2x)(sin\,x) + cos\,x )dx$
$ = \sqrt{2} \int\limits_0^{\pi/2} f(sin\,2x) cos(x - \frac{\pi}{4})dx$
Put $ x - \frac{\pi}{4} = t$
$\Rightarrow dx = dt$
$\therefore 2I_1 = \sqrt{2} \int\limits_{-\pi/4}^{\pi/4} f(sin (\frac{\pi}{2} + 2t)) cos\,t \,dt$
$\therefore 2I_1 = 2\sqrt{2}\int\limits_0^{\pi/4} f(cos\,2t) cos\,t\,dt$
$\Rightarrow I_1 = \sqrt{2}\int\limits_0^{\pi/4} f(cos\,2x) \,cos\,x\,dx$
$\Rightarrow I_1 = \sqrt{2}I_2$