Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Given that the slope of the tangent to a curve y = y(x) at any point (x,y) is (2y/x2). If the curve passes through the centre of the circle x2 + y2 - 2x - 2y = 0, then its equation is :
Q. Given that the slope of the tangent to a curve
y
=
y
(
x
)
at any point
(
x
,
y
)
is
x
2
2
y
. If the curve passes through the centre of the circle
x
2
+
y
2
−
2
x
−
2
y
=
0
, then its equation is :
2653
180
JEE Main
JEE Main 2019
Differential Equations
Report Error
A
x
lo
g
e
∣
y
∣
=
2
(
x
−
1
)
50%
B
x
lo
g
e
∣
y
∣
=
x
−
1
26%
C
x
2
lo
g
e
∣
y
∣
=
−
(
x
−
1
)
13%
D
x
lo
g
e
∣
y
∣
=
−
2
(
x
−
1
)
11%
Solution:
given
d
x
d
y
=
x
2
2
y
⇒
∫
2
y
d
y
=
∫
x
2
d
x
⇒
2
1
ℓ
n
y
=
−
x
1
+
c
passes through centre (1,1)
⇒
c
=
1
⇒
x
ℓ
n
y
=
2
(
x
−
1
)