Q.
Given that the inverse trigonometric functions take principal values only. Then, the number of real values of x which satisfy sin−1(53x)+sin−1(54x)=sin−1x is equal to:
sin−153x+sin−154x=sin−1x sin−1(53x1−2516x2+54x1−259x2)=sin−1x 53x1−2516x2+54x1−259x2=x x=0,325−16x2+425−9x2=25 425−9x2=25−325−16x2 squaring we get 16(25−9x2)=625+9(25−16x2)−15025−16x2 400=625+225−15025−16x2 25−16x2=3⇒25−16x2=9 ⇒x2=1
Put x=0,1,−1 in the original equation We see that all values satisfy the original
equation.
Number of solution =3