Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Given that the inverse trigonometric functions take principal values only. Then, the number of real values of $x$ which satisfy $\sin ^{-1}\left(\frac{3 x}{5}\right)+\sin ^{-1}\left(\frac{4 x}{5}\right)=\sin ^{-1} x$ is equal to:

JEE MainJEE Main 2021Inverse Trigonometric Functions

Solution:

$\sin ^{-1} \frac{3 x}{5}+\sin ^{-1} \frac{4 x}{5}=\sin ^{-1} x$
$\sin ^{-1}\left(\frac{3 x}{5} \sqrt{1-\frac{16 x^{2}}{25}}+\frac{4 x}{5} \sqrt{1-\frac{9 x^{2}}{25}}\right)=\sin ^{-1} x$
$\frac{3 x}{5} \sqrt{1-\frac{16 x^{2}}{25}}+\frac{4 x}{5} \sqrt{1-\frac{9 x^{2}}{25}}=x$
$x =0,3 \sqrt{25-16 x ^{2}}+4 \sqrt{25-9 x ^{2}}=25$
$4 \sqrt{25-9 x^{2}}=25-3 \sqrt{25-16 x^{2}}$ squaring we get
$16\left(25-9 x^{2}\right)=625+9\left(25-16 x^{2}\right)-150 \sqrt{25-16 x^{2}}$
$400=625+225-150 \sqrt{25-16 x^{2}}$
$\sqrt{25-16 x^{2}}=3 \Rightarrow 25-16 x^{2}=9$
$\Rightarrow x^{2}=1$
Put $x = 0, 1, -1$ in the original equation We see that all values satisfy the original equation.
Number of solution $= 3$