Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Given a1 cos α1+a2 cos α2+ ldots+an cos αn=0 and a1 cos (α1+θ)+a2 cos (α2+θ)+ ldots+an cos (αn+θ)=0 (θ ≠ k π), then the value of a1 cos (α1+λ)+a2 cos (α2+λ) + ldots+an cos (αn+λ) is
Q. Given
a
1
cos
α
1
+
a
2
cos
α
2
+
…
+
a
n
cos
α
n
=
0
and
a
1
cos
(
α
1
+
θ
)
+
a
2
cos
(
α
2
+
θ
)
+
…
+
a
n
cos
(
α
n
+
θ
)
=
0
(
θ
=
kπ
)
, then the value of
a
1
cos
(
α
1
+
λ
)
+
a
2
cos
(
α
2
+
λ
)
+
…
+
a
n
cos
(
α
n
+
λ
)
is
106
131
Trigonometric Functions
Report Error
A
θ
−
λ
18%
B
θ
+
λ
13%
C
λ
2%
D
0
67%
Solution:
a
1
cos
(
α
1
+
θ
)
+
a
2
cos
(
α
2
+
θ
)
+
…
+
a
n
cos
(
α
n
+
θ
)
=
0
⇒
(
a
1
cos
α
1
+
a
2
cos
α
2
+
…
+
a
n
cos
α
n
)
cos
θ
−
(
a
1
sin
α
1
+
a
2
sin
α
2
+
…
+
a
n
sin
α
n
)
sin
θ
=
0
⇒
a
1
sin
α
1
+
a
2
sin
α
2
+
…
+
a
n
sin
α
n
=
0
(
since
sin
θ
=
0
)
and
a
1
cos
α
1
+
a
2
cos
α
2
+
…
+
a
n
cos
α
n
=
0
Now,
a
1
cos
(
α
1
+
λ
)
+
a
2
cos
(
α
2
+
λ
)
+
…
+
a
n
cos
(
α
n
+
λ
)
=
(
a
1
cos
α
1
+
a
2
cos
α
2
+
…
+
a
n
cos
α
n
)
cos
λ
−
(
a
1
sin
α
1
+
a
2
sin
α
2
+
…
+
a
n
sin
α
n
)
sin
λ
=
0