Q. Given $a_{1} \cos \alpha_{1}+a_{2} \cos \alpha_{2}+\ldots+a_{n} \cos \alpha_{n}=0$ and $a_{1} \cos \left(\alpha_{1}+\theta\right)+a_{2} \cos \left(\alpha_{2}+\theta\right)+\ldots+a_{n} \cos \left(\alpha_{n}+\theta\right)=0$ $(\theta \neq k \pi)$, then the value of $a_{1} \cos \left(\alpha_{1}+\lambda\right)+a_{2} \cos \left(\alpha_{2}+\lambda\right)$ $+\ldots+a_{n} \cos \left(\alpha_{n}+\lambda\right)$ is
Trigonometric Functions
Solution: