Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For x ∈(-1,1), the number of solutions of the equation tan -1(x+x2+x3+x4+ ldots ∞)+ cot -1(-6+6 x-6 x2+ ldots. ∞)=(π/2), is
Q. For
x
∈
(
−
1
,
1
)
, the number of solutions of the equation
tan
−
1
(
x
+
x
2
+
x
3
+
x
4
+
…
∞
)
+
cot
−
1
(
−
6
+
6
x
−
6
x
2
+
…
∞
)
=
2
π
, is
319
174
Inverse Trigonometric Functions
Report Error
Answer:
0
Solution:
Here
x
+
x
2
+
x
3
+
x
4
+
…
∞
=
1
−
x
x
;
∣
x
∣
<
1
and
−
6
+
6
x
−
6
x
2
+
…
∞
=
1
+
x
−
6
;
∣
x
∣
<
1
So, that
tan
−
1
(
1
−
x
x
)
+
cot
−
1
(
1
+
x
−
6
)
=
2
π
⇒
1
−
x
x
=
1
+
x
−
6
⇒
x
2
+
x
=
−
6
+
6
x
⇒
x
2
−
5
x
+
6
=
0
⇒
(
x
−
2
)
(
x
−
3
)
=
0
⇒
x
=
2
,
3
But
−
1
<
x
<
1
(Given)
So, we conclude that there is no solution.