Q. For $x \in(-1,1)$, the number of solutions of the equation $\tan ^{-1}\left(x+x^{2}+x^{3}+x^{4}+\ldots \infty\right)+\cot ^{-1}\left(-6+6 x-6 x^{2}+\ldots\right.$ $\infty)=\frac{\pi}{2}$, is
Inverse Trigonometric Functions
Solution: