ΘRn=r=1∑2nx4r−3=x+x5+x9……….. Sn=r=1∑2nx4r−2=x2+x6+x10………. Tn=r=1∑2nx4r−1=x3+x7+x11………. Un=r=1∑2nx4−r=x4+x8+x12……….
clearly, Rn>Sn>Tn>Un as x∈(0,4π)
and n→∞Lim(Rn+Sn+Tn+Un)=x+x2+…………..=1−xx ΘRn+Sn=Tn+Un ⇒1−x4x(1−x8n)+1−x4x2(1−x8n)=1−x4x3(1−x8n)+1−x4x4(1−x8n) ⇒x+x2=x3+x4⇒(x+x2)(x2−1)=0⇒ no value of x